SimSmith N Block

(SimSmith version 9.4)

Version 9 of SimSmith introduces the ‘N’ block. Much like the ‘F’ block,
the ‘N’ block provides an ‘escape’ capability; the ‘F’ block allows the user
to write a ‘Function’ and the ‘N’ block allows the user to write a ‘Netlist’.

This document presents the basics of creating a netlist; it is REALLY
simple. It should be noted that the ‘N’ block is, as Brian Kernighan once
said, “a VERY sharp scalpel with which the user CAN and WILL cut
himself.” Many things can go wrong in writing and evaluating a netlist
and SimSmith provides very little insight when something DOES go
wrong. The N block requires a certain amount of tolerance to computer
(and my) stupidity.

Still, the ‘N’ block is extremely powerful and allows the description of a
wide variety of circuits not previously possible in SimSmith.

Remember, SimSmith is, largely, CASE DEPENDENT.... CAPITALIZATION
MATTERS!

In the following, <*> means a name. Names start with a letter and can
have any number of letters and/or digits after the initial letter. Some
names need to start with a particular letter: <V*> is a name which starts
with a ‘V’, <vcvs*> is a name which starts with “vcvs”, etc. If more than
one name is needed, a digit replaces the *. For example, <1> is the ‘first
name’, <2> is the second... etc.

(Names can refer to electrical nodes or to components. SimSmith does
not try to make sure you are using reasonable names. For example, a
resistor might be “Ra a b ¢;” which describes a resistor ‘Ra’ with value
provided by the parameter variable ‘a’ between electrical nodes ‘b’ and

‘)

Also, in the following the term <#> is any number or expression which
results in a number. The construct <#dog> indicates a number for the
port named ‘dog’. For example, “1+2” is a <#>, so is “a” where “a” will be

the value of the parameter. The expression syntax is taken from the ‘F’
block, see the “F Block Syntax” in the ‘help’ menu for more details.

The [] construct is use to indicate ‘optional’ arguments.

Finally, the ‘N’ block also allows for assignments the same as the ‘F’
block. Thus, one can say “$a = 1+2;” and use $a anywhere you need a
number.

Example

To introduce most of the important data [use an example. Consider the
following circuit. Note that this circuit can be implemented, without Cs,
in SimSmith without using the N block. This makes it easy to compare
the ‘correctness’ of the N block implementation.

IICs
1
La Lb

na| (YYY\ nc {YYY__nb
4 N
AN

==Cp /P2

ng

The above circuit ‘netlist’ would be:

P1 ng na; // port 1 is between nodes ng and na

P2 ng nb; // port 2 is between nodes ng and nb
La795nnanc; //Laisa795nH inductor between nodes na and nc
Lb 795nnbnc; // seeabove.

Cp 318pngnc; // Cpisa 318pF capacitor between nodes ng and nc
Cs 10p nanb; //Csisa 10p capacitor between nodes na and nb

All commands end with a ;. There may be multiple commands on a
line. The “//” is a comment to the end of the line. Otherwise,
whitespace is largely ignored.

Takig the cue from Spice, all commands start with a designator. The
first letter of the designator is the ‘type’ of component; L for inductor, C
for capacitor, P for port, R for resistor and ‘X’ for reactance, etc.

The ‘Px’ commands are unique in that they have no ‘value’, only the
node names between which the ports are defined. Note that “P1 a b;” is
NOT the same as “P1 b a;”

The ‘R’, X', ‘I, and ‘C’ commands take a value followed by two node
names. The ‘R’ is a resistance, ‘X’ reactance, ‘L’ inductance, and ‘C’
capacitance. There are no enforced restrictions on the values. For
example, the commands “Raj1 a b;” is the same as “X 1 a b;”. Negative
values are allowed as well. Indeed, to really confuse things,

Ra L400n a b; // same as 400n inductor
La 50/jw a b; // same as 50 ohm resister.

COMMANDS

Here are the actual command syntaxes...

INDEPENDENT DEVICES:

P1 <1> <23

P2 <1> <23

<R*> <#0Ohms> <1> <2>;
<X*> <#jOhms> <1> <2>;
<L*> <#H> <1> <2> [<#Q [#FofQ]];
<C*> <#F> <1> <2>[<#Q [#FofQ]];
<V*> <#Volts> <1> <2>;

<[*> <#Amperes> <1> <2>;

)

// resistor

// reactance.

// inductance optional Q & FofQ
// capacitance optionalQ & FofQ
// voltage.

// current

CONTROLED SOURCES:

Current Controlled Current Source.
Sense current going through component <*> and generate current from
<1> to <2> with gain #.

<cccs*> <l> <2> <*> #

Current Controlled Voltage Source.
Sense current going through component <*> and generate voltage from
<1> to <2> with gain #.

<ccvs*> <1><2><*> #;

Voltage Controlled Voltage Source.
Sense voltage <3> to <4> and generate voltage from <1> to <2> with
gain #.

<vcvs*> <1><2><3> <4> #;

Voltage Controlled Voltage Source.
Sense voltage <3> to <4> and generate current from <1> to <2> with
gain #.

<vcces*> <1><2><3> <4> #;

For the new comer to this stuff, current sources generate current from
<1> to <2> which means current is sucked into <1> and sent out <2>.
This confused me for quite some time when trying to debug various
circuits. Justa ‘heads up’!

TRANSMISSION LINE:

Of course, no Smith chart program would be complete without
transmission line support: #1 is length. One end is the port <1><2>, the
other end is <3><4>,

<trans*> <1> <2> <3> <4> <#len> [meters]
[<#Zo> [<#VF> [<#lossPerHundred> [<#losFrequency>]]]] ;

Note that this transmission line is theoretical and allows one end to
‘float’ with respect to the other. This can cause Matrix Inversion
problems if you forget to restrict the voltages at one end. This doesn’t
happen often, most of the time ports <2> and <4> will be connected, for
example, but this is YOUR choice and Modified Nodal Analysis may blow
up if you leave the voltages unrestricted.

Even for a zero length transmission line, there is no connection between
<1>and <2> or <3> and <4>! (Note, a zero length transmission line
might be lengthened to a very short line in order to avoid numerical
problems.)

TRANSFORMER:

And to more or less fill the menu, one needs a transformer. To be
consistent with SimSmith and with Spice, transformers are modeled as
coupled inductors. Taking the cue from Spice, SimSmith leaves the
inductors alone and provides for a ‘coupling’ coefficient. The command
is:

<K*><1><2><#k>; // couple device <1> to <2> with factor k.

Just a quick note, SimSmith does not ensure the <1><2> above are
inductors. Indeed, you can use capacitors or resistors or even make

them different types; sharp scalpel, be careful!

Coupling of more than 2 devices is not yet supported.

Sinclair Monofilament:

Finally, for the truly ambitious, the SimSmith Netlist block allows you to
make your own entries in the matrix. To understand how this is used,
the reader is encouraged to go bone up on “Modified Nodal Analysis” in
general and matrix “stamps” in particular.

Assuming a certain familiarity with these ideas the “stamp” command
will make sense. For the moment: when you add a stamp to the matrix
you generally have to provide entries for each ‘row’ and ‘column’ and an
entry in the ‘result’ The format of the equation statement is:

<stamp*> <1> <#row>,<#col> [<2><#row><#col>[....]] = <#result>;

For example, a simple 3 volt voltage source between a and b would be:
stampOal,1b-1,-1=3;

Honestly, [don’t expect anyone to use this but... itis how I confirmed
what the matrix entries would be for each of the components before
writing the java code to ‘build it in’. Since its there, I figured I'd tell the
user about it.

BACKGROUND

SimSmith processes the netlist using a methodology called “Modified
Nodal Analysis”. In essence, it writes an equation for the current leaving
each of the nodes. It then solves this set of equations using numeric,
Gaussian elimination and backward substitution.

The specifics can be found in “Electronic circuit & System Simulation
Methods” by T. L. Pillage et. al. The techniques used in SimSmith are
contained entirely within the first 40 pages of this nearly 400 page
book.

In the end, the whole technique relies on the ability numerically to solve
the many simultaneous equations and this requires the ‘inversion’ of a
matrix. Not all matrices are ‘invertable’ and when one is not, SimSmith
simply throws up its hands and says, “matrix not invertable” or some
such. Further, not all matrices that are ‘theoretically invertable’ can be
inverted using present day floating point implementations.

There are numerous (innumerable in fact) things that can make my
simple implementation break down. For hints, read any text on
numerical analysis that deals with the issues of finite arithmetic
precision. It's a nasty business, floating point arithmetic, and while I
implement some precautions, I'm a neophyte and this is just a hobby.

Ultimately, the ‘N’ block can be extremely useful if the user is willing
venture in without a net, and so, [put in the N block for the advanced
user. Please understand, I know it can be broken and [know SimSmith
won’t warn you or explain why it fails. [am very interested in common
practices that can cause failure; not so interested in deliberate attempts
to cause failure.

There are also some annoying things that occur when you are editing a
netlist AND changing the parameters of the block. I know about these
and fix them when time and interest allow. I truly appreciate your
forbearance on these issues.

Wrap UP

With the exception of adding the occasional component, [don’t expect
to make significant improvements to the ‘numerical analysis’ subsystem
in SimSmith; Spice is a better answer if the circuit is too complex or
constantly fails to evaluate. The N block will suffer from this decision,
BUT, there are very real things you can do with the ‘N’ block and I hope
giving you access to it will help in your endeavors.

Ward

